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A B S T R A C T

Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose
subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real
prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly
(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an in-
hibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radio-
sensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and
PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci
compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of
PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell
compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the
removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are
consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR
and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents.

1. Introduction

The poly(ADP-ribose) polymerase (PARP) family of enzymes are
recruited to, and activated at, sites of DNA damage, where they add
poly(ADP-ribose) (PAR) to themselves and to other DNA repair and
chromatin-remodeling factors [1,2]. Once synthesised the PAR polymer
is thought to act as a signal to recruit repair factors to the damage. In
this way PARP proteins are considered to play a key role in co-
ordinating the repair of single [3–10] and double strand DNA breaks
[11–15], and in the restart of stalled or collapsed DNA replication forks
[16–18]. Given this key function in DNA repair, several inhibitors of the
PARP proteins are now under development for cancer treatment, to be
used either alone [19] or in combination with DNA damaging agents
such as radiotherapy (reviewed in [20]). PARP1 depletion has been
shown to modestly increase sensitivity to ionising radiation (IR) in
mouse models [21,22]. In addition, a variety of PARP inhibitors, re-
portedly targeting PARPs 1, 2 and 3 to various degrees, have been
demonstrated to radiosensitize a variety of human tumour cell lines

[23–27] including breast cancer [28–31], and have shown success in
several preclinical and clinical trials [32–43]. Radiosensitization by
these inhibitors is generally considered to be a replication dependent
event [44,45].

The catalytic action of all PARPs are reversed by the endo- and
exoglycosidase activities of poly(ADP-ribose) glycohydrolase (PARG)
[46–50], and it is proposed that following recruitment of other repair
proteins to sites of damaged DNA, PAR must be removed for DNA repair
to be completed [6]. Consistent with a role in DNA repair, PARG de-
ficient cells have been reported to display reduced efficiency of double
strand break (DSB) [51–53] and single strand break (SSB) repair [6],
and to have difficulties during situations of replication stress [53–56].
These defects in repair/replication suggest that PARG like PARP is a
possible target as a single agent in certain genetic backgrounds [53] and
for sensitizing to DNA damaging agents. The reported chemosensitizing
effects are variable [6,52,57–61], but gene depletion or silencing of
PARG using siRNA has consistently resulted in sensitivity to ionising
radiation (IR) in mouse ES cells [62,63] and human cancer cell lines
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[51,64], with accumulation of mitotic defects and death occurring by
mitotic catastrophe [51,64].

Each of the radiosensitizing studies above was carried out in cells
deficient in PARG, and while supportive, the investigation of the ther-
apeutic potential of PARG has been limited by the lack of a cell
permeable, specific, PARG inhibitor. Recently, we developed a novel,
first in class, PARG inhibitor – PDD00017273 [65], which showed
synthetic lethal killing in cells deficient in certain homologous re-
combination associated proteins [66]. Here we test the ability of the
same agent to sensitize breast cancer cells to IR. In addition, we com-
pare this with the radiosensitizing effects of olaparib. Olaparib has re-
ported IC50 values of 5 nM, 1 nM and 4 nM for PARP1, PARP2 and
PARP3 respectively [67].

2. Materials and methods

2.1. Cell culture

The MCF-7 and MDA-MB-231 breast epithelial adenocarcinoma cell
lines were purchased from the American Type Culture Collection
(ATCC® HTB-22™ and ATCC® HTB-26™ respectively). Cell lines were
maintained in Dulbecco’s modified Eagle Medium (DMEM, Gibco,
ThermoFisher Scientific, MA, USA) supplemented with 1× non-essen-
tial amino acids (NEAA, Sigma-Aldrich, MO, USA) and 10% Foetal
bovine serum (Gibco) at 37 °C under an atmosphere containing 5% CO2.

2.2. Inhibitors

The PARG inhibitor, PDD00017273, [65] was resuspended in di-
methyl sulfoxide (DMSO) at a concentration of 20 μM and stored at
−20 °C. A final concentration of 0.3 μM was used. The PARP inhibitor,
olaparib, was purchased from Cambridge Biosciences (UK) and pre-
pared in DMSO to give a 1000× stock. A final concentration of 1 μM
was used. The dual-site binding tankyrase inhibitor – 8-Methyl-2-(3-
oxo-3-(4-((quinolin-8-yl)aminocarbonyl)-phenylamino)propyl)quina-
zolin-4-one (compound 14 in reference [68]) was prepared as a 5 mM
stock in DMSO. A final concentration of 5 μM was used.

2.3. SiRNA transfection

ON-TARGETplus siRNA was purchased from Dharmacon (GE
Healthcare Life Sciences, CO, USA) for two individual PARG
(NM_003631) siRNA oligonucleotides, PARP1 (NM_001618) and the
non-targeting siRNA #1 (scramble) control. All siRNAs were re-
suspended at 20 μM in 1 × siRNA universal buffer (Dharmacon) and
stored at −20 °C. Cells were seeded in 6-well plates and left overnight
to attach. The following day, cells were transfected with 20 nM siRNA
(final concentration) using Dharmafect 4 reagent (Dharmacon) fol-
lowing manufacturers’ instructions. Knockdown was confirmed after
48 h by western blotting.

2.4. Clonogenic survival assay

Cells were plated at known densities in 90 mm dishes and left to
attach for 4 h. After this time, inhibitors were added to the media at the
concentrations stated above. The next day, cells were exposed to in-
creasing doses of IR using an IBL437C Irradiator (Source 51.5TBq,
Cs137) and then left for 15 days to form colonies. Colonies were stained
with 4% methylene blue in 70% methanol and counted. Where siRNA
knockdown was used, cells were transfected in 6-well plates and left for
48 h before replating at known densities in 90 mm dishes and exposing
to increasing doses of IR.

2.5. Western blotting

Cells were lysed in RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1%

Triton X-100, 0.1% SDS, 1 mM EDTA, and 1% sodium deoxycholate) in
the presence of 1× protease and phosphatase inhibitor cocktails
(Roche, Sigma-Aldrich, MO, USA). An aliquot of 30 μg total protein
(measured by BioRad DC protein assay) was run on an SDS-PAGE gel
and transferred to Hybond ECL membrane (GE Healthcare, CO, USA).
This membrane was immunoblotted with antibodies against Poly(ADP-
ribose) 10H (1:400, Enzo Life Sciences, NY, USA), PARG (1:500, Santa
Cruz Biotechnology, TX, USA), PARP1 (1:1000, Santa Cruz
Biotechnology) and TUBB (β-tubulin; 1:2000, Sigma-Aldrich), each
diluted in 5% milk and incubated at 4 °C overnight. After the addition
of the appropriate HRP-conjugated secondary antibody and further
washes, the immunoreactive protein was visualised on Hyperfilm™ ECL
(GE Healthcare) using ECL reagents (GE Healthcare) following manu-
facturer’s instructions.

2.6. Immunofluorescence

Cells were plated on to coverslips and allowed to settle before
treating with inhibitors overnight. The next day, cells were irradiated at
3 Gy and then either fixed immediately or left to repair at 37 °C for the
time stated in the figures. Cells were fixed in 4% paraformaldehyde
solution (Insight Biotechnology Ltd, UK) for 20 min at room tempera-
ture and then extensively washed (3 × 5 min in tris-buffered saline
(TBS), 1 × 10 min in phosphate-buffered saline (PBS) containing 0.5%
Triton X-100 and 3 × 5 min in TBS). Coverslips were placed in 10%
goat serum (ThermoFisher Scientific) in TBS for 1 h at room tempera-
ture to block followed by a further 3 × 5 min washes in TBS prior to
incubation with the primary antibodies anti-γH2AX (ser139) (Cell
Signaling, MA, USA), RAD51 (Santa Cruz Biotechnology), DNA-PKcs
pS2056 (Abcam, UK) or poly(ADP-ribose) 10H (Enzo Life Sciences),
Pericentrin (Abcam), β-Tubulin (Sigma-Aldrich) or the PAR binding
reagent MABE1016 (Millipore) each diluted (1:500) in TBS containing
3% goat serum, for 16 h at 4 °C. The coverslips were subsequently
washed 4 × 10 min in TBS followed by incubation with the secondary
antibodies, Alexa-fluor 594 goat anti-rabbit IgG (ThermoFisher
Scientific) or Alexa-fluor 488 goat anti-Mouse IgG (ThermoFisher
Scientific) diluted in TBS containing 3% goat serum (1:500) for 1 h at
room temperature and finally washed 3 × 5 min TBS. Coverslips were
then mounted onto microscope slides with DAPI containing mountant
(Vector Labs, CA, USA).

All images were obtained with a Zeiss LSM 510 inverted confocal
microscope using planapochromat 63 × /NA 1.4 oil immersion objec-
tive and excitation wavelengths 488 nm, 546 nm and 630 nm. Through
focus maximum projection, images were acquired from optical sections
0.5 μM apart and with a section thickness of 1.0 μm. Images were
processed using Adobe Photoshop (Abacus Inc.). The frequency of cells
containing foci was determined by counting at least 100 nuclei on each
slide.

2.7. Identification of mitotic phenotypes

Cells were stained with antibodies against TUBB (β-Tubulin), PCNT
(pericentrin) and DAPI and observed by fluorescence microscopy.
Mitotic cells were classified into prophase, metaphase, anaphase and
telophase stages based on DAPI staining of the DNA (example images of
classification are shown in Supplementary Fig. 1). β-tubulin stained
spindle formation was classed as abnormal if it was either monopolar,
asymmetric or disorganized. Pericentrin was used to allow identifica-
tion of multipolar, monopolar or fragmented centrosomes.

2.8. Micronuclei scoring

Micronuclei were identified by DAPI staining in cells stained for
γH2AX in the samples treated with inhibitors alone and 12 h post-IR
exposure. Cells with greater than five micronuclei where regarded as
necrotic and therefore not included in the analysis. Micronuclei were
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then scored as either negative or positive for γH2AX staining and
average number of micronuclei of either type was calculated from the
total number of cells counted.

2.9. pH3 staining and cell cycle analysis

Cells were seeded in 90 mm dishes and left to attach for 4 h before
inhibitors were added to the media. The next day cells were exposed to
3 Gy IR and then left for 24 h before fixing in 70% methanol and stored
overnight at −20 °C. After washing in PBS cells were resuspended in
2 ml PBS supplemented with 0.5% BSA (Sigma-Aldrich) and 0.25%
Triton-X100. Following 15 min incubation on ice, cells were re-
suspended with Histone H3 pS10 antibody (Abcam, 1:1000) diluted in
100 μl of PBS supplemented with 0.5% BSA and 0.25% Triton-X100 and
incubated for 2 h. After this time cells were washed with 0.25% Triton-
X100 in PBS and then incubated with secondary antibody Alexfluor 488
goat anti-mouse IgG (1:100, diluted in 100 μl PBS supplemented with
1% BSA) for 30 min protected from light. Following a final wash with
PBS, cells were incubated with 5 μl RNaseA (2 mg/ml) and 200 μl
propidium iodide (PI, 50 μg/ml) for 15 min in the dark. Samples were
analysed by flow cytometry using the FACSCalibur 488 nm laser (BD
Biosciences, CA, USA).

2.10. Statistical analysis

Where p values are indicated the Student’s T-test was used for
analysis between two sets of data, in each case two-sided, unpaired tests
were carried out.

3. Results

3.1. Both PARP1/2/3 and PARG inhibitors increase sensitivity to ionising
radiation

We previously established that 0.3 μM of the PARG inhibitor
PDD00017273 is the optimum dose for inhibition of endogenous PARG
activity, with minimal cell killing in the breast cancer cell line MCF-7
[53]. Here, the ability of PDD00017273 to inhibit PARG and lead to
accumulation of PAR was confirmed by western blotting and im-
munofluorescent staining (Fig. 1A and B). In contrast, and as expected,
incubation with olaparib led to reduced levels of endogenous PAR.
Concomitant exposure to olaparib and PDD00017273 also resulted in
reduced PAR accumulation, confirming the specificity of the PARG in-
hibitor and the reagents.

For therapeutic relevance a relatively low dose of 3 Gy IR was
chosen. Ten minutes post-IR increased PAR could be detected using
immunofluorescence but not by western blotting (Fig. 1A and C).
However, in the presence of the PARG inhibitor a large increase in PAR
was observed using both techniques, suggesting that PAR synthesis is
induced by IR, but that the turnover is too rapid to always observe in
control cells. IR induced PAR activity had returned to basal levels
10 min post-IR in DMSO treated cells, and remained high in a subset of
cells at 90 mins post-IR when PARG was inhibited (Fig. 1C). Addition of
olaparib or olaparib plus PDD00017273 during IR treatment led to
reduced PAR (Fig. 1A). These data demonstrate that inhibition of PARG
with PDD00017273 results in reduced PAR turnover and hence DNA
damage-induced accumulation and persistence of PAR.

Previous genetic studies demonstrated that PARG has potential as a
radiosensitizing target, but to date a therapeutic agent has not been
available to test this hypothesis. Having demonstrated that PARG in-
hibition by PDD00017273 effects PAR turnover following IR, the PARG
inhibitor was added to MCF-7 cells 16 h prior to treatment with IR and
survival determined by clonogenic survival assay (Fig. 2A). PARG in-
hibition resulted in approximately 2–3 fold increase in sensitivity to IR
compared with DMSO control (3 Gy – 22% survival vs. 55% in control;
p < 0.0001). Consistent with this, depletion of PARG also caused

reduced survival in response to IR (Fig. 2B). The effect induced was
similar to that seen with olaparib or following co-treatment with both
inhibitors (3 Gy – 15% and 25% survival respectively; p < 0.0001
compared with DMSO control). Likewise comparing PARP1 depleted
cells with PARG depleted cells, there was no consistent difference in the
degree of radiosensitization induced (Fig. 2B). Western blotting con-
firmed siRNA-mediated depletion of PARP1 and PARG (Fig. 2C). A si-
milar effect was seen in the triple negative breast cancer (TNBC) cell
line MD-MBA-231 (Supplementary Fig. 2). Our data support the idea
that inhibition of PARPs can sensitize to IR in breast cancer, including
both ER+ and TNBC [28–31]. In addition, we show for the first time
that a specific PARG inhibitor, PDD00017273, can sensitize to IR to a
similar degree in these backgrounds.

3.2. PARP1/2/3 inhibition slows and PARG inhibition speeds up repair of
IR induced DNA double strand breaks

Ionising radiation induces breaks in DNA [69]. Given the proposed
function of PARG in promoting efficient DNA repair, we examined in-
duction and repair of DNA damage. To do this we used phosphorylation
of histone H2AX on Ser139 (γH2AX) as a marker of DNA damage, and
followed the kinetics of repair with time post-IR in the presence or
absence of PDD00017273 or olaparib (Fig. 3). Consistent with our
published data [53,66,70] inhibition of PARP1/2/3 or PARG resulted in
a significantly increased basal level of γH2AX foci staining (p < 0.05
for PARP and p < 0.001 for PARG inhibitors compared with control).
As expected, treatment with 3 Gy IR induced a rapid increase in the
percentage of cells displaying greater than 10 γH2AX foci/cell
(p < 0.001 at 10 min for each condition compared with corresponding
mock irradiated sample). Considering the increased background
staining, the presence of neither inhibitor during irradiation affected
the initial degree of induction of γH2AX foci. However, the resolution of
γH2AX foci to basal levels during recovery from IR occurred earlier and
faster when PARG was inhibited and was delayed when PARP1/2/3
was inhibited. In control cells maximum levels of IR-induced DNA da-
mage were reached at 10–30 min, resolution began after 30 min but
was not significant until 6 h post-IR, and basal levels were restored
within 24 h post-IR. In the presence of the PARG inhibitor, peak levels
were reached at 10 min post-IR, resolution began between 10 and
30 min, was significantly different to control at 1 h post-IR, and basal
levels were reached around 12 h after IR. In contrast, olaparib treated
cells showed peak levels of DNA damage at 10 min post-IR, which after
an initial small reduction remained relatively high for up to 6 h with
significant resolution then occurring between 6 and 24 h after irradia-
tion.

Together these data suggest that DNA double strand break repair is
altered by olaparib or PDD00017273 however each agent may not
function via the same mechanism.

3.3. PARG but not PARP1/2/3 inhibition promotes rapid activation of IR-
induced DNA-PKcs, while both PARP and PARG delay resolution of IR-
induced RAD51 foci

Radiation induces both single and double strand breaks in DNA
however the kinetics of repair seen above suggest that it is changes to
the repair of DNA DSBs that accounts for much of the difference be-
tween control and PDD00017273/olaparib treated cells. IR-induced
DNA DSBs are repaired by two separate but complementary pathways –
non-homologous end-joining (NHEJ) and homologous recombination
repair (HRR). It is generally considered that repair by NHEJ is rapid,
error prone and can occur at all stages of the cell cycle whereas HRR is
slower, error free and is restricted to S- and G2-phases of the cell cycle
[71]. We examined the relative contribution of each of these pathways
to the repair of IR-induced DNA damage in the presence/absence of
olaparib or PDD00017273, using activated DNA-dependent protein ki-
nase, catalytic subunit (DNA-PKcs, pS2051) foci as a marker of NHEJ
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and RAD51 recombinase (RAD51) foci as a marker of HRR (Fig. 4). In
control cells, DNA-PKcs foci rapidly increased in response to IR, peaked
at 30 min and quickly resolved such that only 20% of the foci remained
at 3 h post-IR. The remaining foci were then slowly resolved to basal

levels by 24 h post-IR (Fig. 4A and B). In the same control cells, RAD51
foci levels increased slowly to peak at 3 h then decreased to basal levels
by 12 h post-irradiation (Fig. 4C and D). In the presence of olaparib or
PDD00017273, the appearance of IR-induced RAD51 foci was delayed

Fig. 1. Inhibition of PARG leads to accumulation and
persistence of poly(ADP-ribose) both alone and following
ionising radiation. (A) Protein expression of poly(ADP-ri-
bose (PAR), PARG and PARP, following inhibition of
PARG with 0.3 μM PDD00017273, PARP with 1 μM ola-
parib, or both, either alone or post 3 Gy ionising radiation
(IR). (B&C) Immunodetection of PAR in cells treated with
inhibitor and left for various times post-IR as indicated. In
all cases MCF-7 cells were incubated for 16 h with in-
hibitor before exposure to IR.
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compared with control cells but peaked at a similar 3 h post-IR. In in-
hibited cells, IR-induced RAD51 foci then persisted at peak levels until
6 h (no significant decrease in foci between 3 and 6 h in inhibited cells
compared with a 25% decrease in control cells; p < 0.01), after which
they were resolved and basal levels were restored by 12 h post-IR
(Fig. 4C). In contrast to RAD51 foci, DNA-PKcs foci responded differ-
ently depending on whether PARP1/2/3 or PARG was inhibited. In the
presence of olaparib, DNA-PKcs foci increased and peaked at similar
levels, and with similar kinetics, to control cells (approximately 30%
cells with greater than 10 foci/cell by 10 min post-IR). However, these
foci then persisted at peak levels until 3–6 h post-IR (30% and 24% in
PARP1/2/3 inhibited cells compared with 11% and 6% in control at 3
and 6 h respectively; p < 0.05 and p < 0.001 at each time point)
with a significant percentage of cells containing high levels of foci even
24 h post-IR (Fig. 4A). On the other hand, in PARG inhibited cells there
was a rapid induction of DNA-PKcs foci to almost double the peak level
seen in control cells (49% compared with 29% respectively; p < 0.01).
This increase persisted until 1 h post-IR, after 3 h approximately half
had been resolved and then similar to controls, basal levels were re-
stored by 12–24 h post-IR (Fig. 4A). Together these data suggest that
although olaparib and PDD00017273 sensitize to IR, there may be a
difference in the way cells respond to IR-induced DNA double strand
breaks, with increased NHEJ activity being prompted in the presence of
PARG inhibitor, but not following PARP1/2/3 inhibition. It is likely
that it is the differential kinetics of activation of each pathway by

olaparib or PDD00017273 following IR that contributes to the differ-
ence in resolution of γH2AX foci seen above. Interestingly, in the ab-
sence of IR, endogenous levels of RAD51 but not DNA-PKcs foci were
increased by both inhibitors, suggesting that this PARG inhibitor in-
duced NHEJ activity is specific to IR-induced DNA damage.

3.4. PARP and PARG inhibitors specifically increase IR-induced γH2AX
positive micronuclei formation

The formation of micronuclei (MN) can occur due to errors in
chromosome segregation during anaphase. IR induces γH2AX positive
(+ve) micronuclei in cancer cells, perhaps as a result of unrepaired
DSBs and broken chromosome ends being incorporated into IR-induced
MN [72], or reflecting altered chromatin structures caused after ille-
gitimate DNA repair [73]. We examined MN formation following IR in
the presence or absence of olaparib or PDD00017273 (Fig. 5 and Sup-
plementary Fig. 3). As expected radiation induced total MN formation
significantly compared with untreated controls, with an average of
0.3 MN/cell compared with 0.1 MN/cell in DMSO treated samples
(p < 0.001 comparing IR alone to no IR). This increase was greater in
cells where PARP1/2/3 or PARG were inhibited with IR-induced MN
levels of 0.5 and 0.6 MN/cell for PDD00017273 and olaparib respec-
tively (p < 0.05 for each compared with IR alone). When γH2AX po-
sitive (+ve) and negative (−ve) MN were analysed the majority of IR-
induced MN were −ve. Interestingly though it was the γH2AX +ve

Fig. 2. Inhibition or depletion of PARP or PARG in-
creases sensitivity to ionising radiation. (A) Survival
fraction of MCF-7 cells untreated (DMSO), treated
with PARG inhibitor (PDD00017273), PARP in-
hibitor (olaparib), or both for 16 h prior to and
during recovery from ionising radiation (IR). (B)
Survival fraction following IR of siRNA transfected
cells as indicated. Survival was measured by clono-
genic survival assay. Mean and standard deviation of
three independent repeats are shown. Statistical
significance calculated by Student’s T-test, cf. to
DMSO or scrambled siRNA control, where *** re-
presents p < 0.001. (C) Protein expression of siRNA
transfected cells 48 h post-transfection.

P. Gravells et al. DNA Repair 61 (2018) 25–36

29



rather than −ve MN that were increased by PARP1/2/3 or PARG in-
hibition. This supports the idea that it is altered DNA repair that is
responsible for radiosensitization by olaparib and PDD00017273.

3.5. PARG inhibition has a greater effect on IR-induced metaphase
aberrations than inhibition of PARP1/2/3

Previous reports of the effect of PARP1/2/3 inhibition on IR-in-
duced cell cycle distribution are limited however radiosensitization is
generally thought to be replication dependent [24,27]. In addition
there are conflicting reports regarding the effects of PARG depletion on
IR-induced cell cycle checkpoints. For example, enhanced G2/M
checkpoint arrest is seen in PARG depleted HeLa cells [51], while ab-
rogation of this arrest is reported in lung cancer cells [64]. Here, the cell
cycle profile of MCF-7 cells following IR in the presence or absence of
olaparib or PDD00017273 was examined by flow cytometry. By co-
staining for phosphorylation of H3 Serine 10 (pH3) the percentage of
cells in mitosis could also be observed (Fig. 6). At the relatively low
doses of radiation used here, in MCF-7 cells the predominant activated

cell cycle checkpoint was the G1/S checkpoint [74]. Addition of the
PARG inhibitor PDD00017273 enhanced the G1/S checkpoint arrest
while reducing the number of cells in S, G2 and M phases of the cell
cycle (p < 0.05, compared with equivalent phase in IR-treated non-
inhibited cells). Olaparib had a similar effect but with a more pre-
dominant effect on S-phase (p < 0.001, compared with IR-treated non-
inhibited cells). Neither PDD00017273 nor olaparib altered the cell
cycle profile in the absence of IR.

Following IR both PARP and PARG inhibitors reduced the percen-
tage of cells in mitosis (Fig. 6B, p < 0.05, compared with IR-treated
non-inhibited cells). The fidelity of mitosis was tested by im-
munodetection of microtubules and centrosomes. Following IR in the
presence of PARG inhibition, an increase in the percentage of mitotic
cells with aberrant spindle formation was observed (Fig. 7A) including
monopolar, asymmetric and disorgansied spindle formations (Fig. 7B).
This was not seen following inhibition of PARP1/2/3 with olaparib.
Aberrant mitosis was accompanied by an increase in the proportion of
mitotic cells in prometaphase/metaphase (Fig. 7C). This suggests that
despite the decrease in total cells in mitosis, PARG inhibition does effect

Fig. 3. PARG and PARP inhibitors have different effects on repair of ionising radiation-induced DNA damage. (A) Percentage of cells displaying>10 γH2AX foci/cell in untreated
(DMSO), PARG inhibited (0.3 μM PDD00017273), or PARP inhibited (1 μM olaparib) MCF-7 cells in the absence and at various times post 3 Gy ionising radiation (IR). Mean and standard
error of the mean of three independent repeats is shown. Statistical significance calculated by two-sided Student’s T-test, cf. peak H2AX activation under same conditions, where *, ** and
*** represent p < 0.05, 0.01 and<0.001. (B) Example images of γH2AX foci (Red) co-stained with DAPI. MCF-7 cells were incubated for 16 h with inhibitor before exposure to IR.
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mitotic progression in IR treated MCF-7 cells. The large shift in the
proportion of cells in metaphase was not seen following IR with PARP
inhibition, where similar to control, 63% of mitotic cells were in me-
taphase. In the absence of IR, PDD00017273 alone did not alter the
percentage of cells in mitosis (Fig. 6B), nor did it effect progression
through mitosis (Supplementary Fig. 4), suggesting at the doses used
here it does not act directly as a spindle poison.

Tankyrases (PARP5a and PARP5b) function during mitosis [75–81].
Their action is likely to be reversed by PARG but it is not inhibited by
olaparib. The incidence of aberrant mitosis and mitotic progression
were therefore examined after incubation with a tankyrase inhibitor

[68]. Following IR, the tankyrase inhibitor did phenocopy
PDD00017273, in that it increased the incidence of aberrant spindles,
however it did not lead to accumulation of cells in metaphase (Sup-
plementary Fig. 5). Interestingly inhibition of tankyrases also sensitized
to IR (Supplementary Fig. 6). While this was not to the extent seen with
PD00017273, it does suggest that the likely mitotic function of PARG in
the reversal of tankyrase activity may have a role to play in radio-
sensitization.

Concurrent with scoring aberrant mitosis, the percentage of cells
with multinucleation was assessed. PARG inhibition also increased 2
fold the amount of IR induced multinucleation (Fig. 7E). Approximately

Fig. 4. PARG and PARP inhibitors have different effects on activation of DNA damage repair pathways following ionising radiation. Percentage of cells displaying (A)> 10 DNA-
PKcs foci/cell and (C)> 10 RAD51 foci/cell, in untreated (DMSO), PARG inhibited (0.3 μM PDD00017273), or PARP inhibited (1 μM olaparib) MCF-7 cells in the absence and at various
times post 3 Gy ionising radiation (IR). Mean and SEM of three independent repeats is shown. Statistical significance calculated by two-sided Student’s T-test, where *, ** and ***
represent p < 0.05,< 0.01 and<0.001 respectively In (A) significance is compared with DMSO control at the equivalent time point and in (C) significance calculated compared with
the sample indicated. (B) Example images of DNA-PKcs foci and (D) RAD51 foci (Red) each costained with DAPI. In all cases MCF-7 cells were incubated for 16 h with inhibitor before
exposure to IR.
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1000 cells were counted of which no cells were found to be multi-
nucleate in the absence of IR regardless of PARP or PARG inhibition
(data not shown).

4. Discussion

This is the first report of radiosensitization by a first in class, cell
permeable, specific inhibitor of PARG, PDD00017273, and supports the
proposal made by genetic studies [51,62–64] that PARG inhibitors
could be used clinically. In addition, we present the first direct com-
parison of the radiosensitizing effects of the PARP1/2/3 inhibitor,
olaparib, with a PARG inhibitor. Sensitization to IR was of the same

magnitude and, as expected, both functioned by altering the DNA da-
mage response. However, the way in which each sensitized appeared to
differ.

PARP1 and PARP2 function at collapsed replication forks [18,82]
and radiosensitization by inhibitors of PARPs is thought to be replica-
tion dependent [24,27], with an increase in γH2AX and RAD51 foci
reported. Similar to these reports, here IR-induced γH2AX persisted at
later times post-IR in olaparib treated compared with control cells and a
greater number of RAD51 foci were seen. In addition, there were more
DNA-PKcs foci at later times post-IR in olaparib treated than in control
cells. These data are consistent with the idea that replication associated
DNA breaks are repaired at later times [18] and/or that the presence or

Fig. 5. PARP and PARG inhibitors increase γH2AX positive micro-
nuclei after ionising radiation. Micronuclei (MN) frequency in un-
treated (DMSO), PARG inhibited (0.3 μM PDD00017273), or PARP
inhibited (1 μM olaparib) MCF-7 cells in the absence or 12 h post 3 Gy
ionising radiation (IR). Mean and SEM of three independent repeats is
shown. Statistical significance calculated by two-sided Student’s T-test
compared with DMSO control under equivalent conditions, where *
represents p < 0.05. Representative images depicting (i) γH2AX ne-
gative and (ii) γH2AX positive MN are shown below. A full data set of
MN under each condition is shown in Supplementary Fig. 3.

Fig. 6. PARP and PARG inhibitors increase G1 arrest
and reduce mitotic index following ionising radia-
tion. Percentage of cells in each phase of the cell
cycle as determined by FACS analysis of PI and pH3
stained MCF-7 cells untreated (DMSO), PARG in-
hibited (0.3 μM PDD00017273), or PARP inhibited
(1 μM olaparib) in the absence or 24 h post 3 Gy io-
nising radiation (IR). For clarity (A) depicts all
phases of cell cycle and (B) represents only the mi-
totic fraction (pH3 positive) from the same data set
plotted on a different scale. Mean and SEM of three
independent repeats is shown. Statistical significance
calculated by two-sided Student’s T-test compared
with DMSO control under equivalent conditions,
where * and *** represent p < 0.05 and<0.001
respectively.
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absence of PARPs 1/2 and 3 can alter the recruitment of the non-
homologous end-joining factors XRCC6/XRCC7 (KU70/80) to DSBs
[15,83].

In contrast, inhibition of PARG resulted in faster repair of IR-in-
duced DNA damage and concomitant rapid activation of significantly
higher levels of DNA-PKcs. NHEJ involving DNA-PKcs is thought to
predominate during G1 phase of the cell cycle, while during S and G2
both NHEJ and HR can function [84,85]. Our data suggest that pro-
longed activation of PAR can increase recruitment of NHEJ to DNA
damage during G1, and/or alter the balance of NHEJ/HR to DNA da-
mage in other phases of the cell cycle. At later time points PARG in-
hibitors also led to higher levels of RAD51 foci perhaps indicative of a
separate role for PARG at collapsed replication forks [53,66]. This
functional difference at classical DSBs and replication fork associated
DSBs is supported by that fact that in the absence of any exogenous
DNA damage, PARG inhibitors were seen to activate HR but not NHEJ.

There are conflicting reports of the effect of PARG depletion on cell
cycle progression, with one report of IR treated HeLa cells having in-
creased G2/M arrest and accumulation of cells in metaphase [51],
while another in lung (A427) and prostate (PC-14) cancer cell lines
demonstrated suppression of the G2/M checkpoint [64]. Clearly the
mutational landscape of individual cell lines will affect their response to
a PARG inhibitor and/or IR. However, here in MCF-7 breast cancer
cells, while PARG inhibition resulted in a reduced G2/M population and
a reduced mitotic index, those cells in mitosis had an increased in-
cidence of aberrant mitotic figures and a higher proportion of mitotic
cells were in metaphase than in control cells. Interestingly, PARP

inhibition also reduced the IR-induced G2/M population, however no
increase in aberrant mitotic figures or metaphase was seen, indicating
that the aberrant mitotic phenotypes were PARG specific. The PARP
inhibitor olaparib is considered selective for PARP1/2/3 [67], while
PARG is predicted to reverse the activity of a range of poly(ADP-ri-
bosyl)ating enzymes including tankyrases (TNKS/PARP5a and TNKS2/
PARP5b). Tankyrases are required for spindle integrity during mitosis
through PARylation of nuclear mitotic apparatus protein 1 (NUMA1).
Thus failure to cleave the PAR from NUMA1 (installed by the tan-
kyrases) may give the observed results [86]. Here inhibition of tan-
kyrases resulted in an increase in IR-induced aberrant mitotic pheno-
types and led to a small increase in radiosensitivity, thus, it is possible
that the PARG inhibitor specific mitotic phenotypes observed are due to
interruption of tankyrase function. Alternatively, given the role of
PARP3 during mitosis [86], it is possible that preventing addition of
PAR by PARP3 has functional effects that inhibition of PARP3 does not.
Finally, aberrance during mitosis could be the result of increased and
inappropriate NHEJ.

Using an early moderate pan-PARP inhibitor (5-hydroxyisoquinolin-
1-one) and perhaps more relevantly an exogenously expressed trans-
dominant PARP-1 DNA binding domain, PARP-1 was demonstrated to
positively regulate p53 transactivation function in response to IR and
therefore allow MCF-7 cells to overcome the p53 dependent G1
checkpoint [87]. Here, although a predominant IR-induced G1 arrest
was seen in control cells neither olaparib nor PDD00017273 could
overcome this arrest, rather it was augmented. It is possible that dif-
ferences in the scheduling of inhibition and IR account for this, such

Fig. 7. PARG inhibited mitotic cells accumulate in
metaphase and feature increased aberrance. (A)
Percentage of mitotic MCF-7 cells untreated (DMSO),
PARG inhibited (0.3 μM PDD00017273), or PARP
inhibited (1 μM olaparib) 24 h post 3 Gy ionising
radiation (IR). Abnormal spindle defects are detected
by immunofluorescent staining for β-tubulin
(Green), pericentrin (Red) and DAPI (Blue), the
value above the bars indicates the percentage of the
total cell population in mitosis. (B) Representative
images of aberrant phenotypes seen. (C) Distribution
of cells in each phase of mitosis assessed from cells
stained as above. (D) Percentage of multinucleated
cells as stained above, example images shown to
right.
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that the increased pre-incubation time carried out here, allows p53 to
overcome PARP/PARG inhibition. Future studies of p53 function in
moderating radiation response upon the PARG/PARG inhibition will be
important for future clinical application. In MCF-7 cells the number of
cells in G1 is further increased as cells are released from the transient
G2/M arrest and pass into G1 [88]. It is tempting to speculate that in
cells where the DNA damage repair pathways are altered (i.e. following
PARP or PARG inhibition), cells with damaged DNA can persist into G1
where they die of mitotic catastrophe. Supportive of this hypothesis we
see increased IR-induced γH2AX positive micronuclei and increased
numbers of multinucleated cells.

5. Conclusion

In summary, previously we demonstrated the use of the PARG in-
hibitor PDD00017273 for specific killing of cells defective in certain HR
proteins including BRCA1/2 [66]. Here, the same inhibitor is shown to
radiosensitize. This is the first report of radiosensitization by a PARG
inhibitor and adds to the growing evidence that like PARP, inhibition of
PARG has clinical potential. However, when looking at the mechanism
by which sensitization occurs there are clear differences between PARP
and PARG inhibition, and it is important that further investigation into
these differences is undertaken.
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